
A

The First Maurer-Cartan Structure Relation

The first structure relation [2] defines the torsion or spin form as the exterior
covariant derivative of the tetrad form:

T a
µν = (D ∧ qa)µν = (d ∧ qa)µν + ωa

µbq
b
ν − ωa

νbq
b
µ (A.1)

where ωa
µb is the spin connection. The torsion tensor is therefore:

Tλ
µν = qλ

aT
a
µν (A.2)

and using the tetrad postulate:

Tλ
µν = qλ

a

(
∂µq

a
ν − ∂νq

a
µ + ωa

µbq
b
ν − ωa

νbq
b
µ

)
(A.3)

we obtain:
Tλ

µν = Γλ
µν − Γλ

νµ . (A.4)

This is an expression for the torsion tensor in terms of the gamma connec-
tion of any symmetry. If the gamma connection is the symmetric Christoffel
symbol:

Γλ
µν = Γλ

νµ (A.5)

then the torsion tensor vanishes.





B

The Second Maurer-Cartan Structure Relation

The second structure relation defines the Riemann or curvature form as the
exterior covariant derivative of the spin connection, regarded as a one-form:

Ra
b = D ∧ ωa

b (B.1)

i.e
Ra

bνµ = ∂νω
a
µb − ∂µω

a
νb + ωa

νcω
c
µb − ωa

µcω
c
νb . (B.2)

It is proven in this appendix that the second structure relation is equivalent to
the definition of the Riemann tensor for a gamma connection of any symmetry.

The proof starts with the tetrad postulate expressed as:

ωa
µb = qa

νq
λ
bΓ

ν
µλ − qλ

b∂µq
a
λ . (B.3)

Multiplying both sides of Eq (B.3) by qb
λ and using:

qb
λq

λ
b = 1 (B.4)

the tetrad postulate can be expressed as:

∂µq
a
λ = qa

νΓ
ν
µλ − qb

λω
a
µb . (B.5)

Differentiating Eq (B.3) and using the Leibnitz Theorem:
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(B.6)

Now use the Leibnitz Theorem again:

∂ν

(
qλ

bq
a
σ

)
= qa

σ∂νq
λ
b + qλ

b∂νq
a
σ (B.7)

to obtain:
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Now use Eq. (B.5)in Eq. (B.8):
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(B.9)

Switching the µ and ν indices gives:
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which implies:
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because
(∂ν∂µ − ∂ν∂µ) qa

λ = 0. (B.12)

In order to evaluate the Riemann form:

Ra
bνµ = ∂νω

a
µb − ∂µω

a
νb + ωa

νcω
c
µb − ωa

µcω
c
νb (B.13)

we need:
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λ (B.14)
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λ (B.15)
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a
λ (B.16)

ωc
νb = qc

µq
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νλ − qλ

b∂νq
c
λ . (B.17)

It is then possible to evaluate products such as:

ωa
νcω

c
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The Riemann tensor can then be evaluated using:

Rσ
λνµ = qσ

aq
b
λR

a
bνµ. (B.19)

In order to evaluate Eq (B.19) first rearrange dummy indices in Eq. (B.18) as
follows:
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Secondly cancel the term qλ
bΓ

σ
νρ ∂νq

a
σ in Eq. (B.11) with the term−(qλ

c∂νq
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(qλ
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µλ ) In Eq. (B.18) by rearranging dummy indices as follows:
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Finally cancel the term −qb
λω

a
νb∂µq

λ
b in Eq. (B.11) with the term qλ

cq
λ
b

(∂νq
a
λ)(∂µq

c
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µq
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c
λ in Eq. (B.18). To do this rewrite the Eq

(B.18) term as qλ
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λ
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c
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a
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µ
νλ ) and use the tetrad postulate:
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to obtain:
−qλ

cq
λ
bq

b
λω

a
νb∂µq

c
λ = −qc

λω
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c
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We therefore obtain:

−qb
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a
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(
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In order to show that this is zero use:

qλ
cq

c
λ = 1 (B.25)

and differentiate:
∂µ(qλ

cq
c
λ) = 0. (B.26)

Finally use the Leibnitz Theorem to obtain:

qλ
c∂µq

c
λ + qc

λ∂µq
λ
c = 0. (B.27)

The remaining terms give the Riemann tensor for any gamma connection:

Rλ
σνµ = ∂νΓ

σ
µλ − ∂µΓ

σ
νλ + Γ σ

νρ Γ
ρ
µλ − Γ σ

µρ Γ
ρ
νλ (B.28)

quod erat demonstrandum.





C

The First Bianchi Identity

The first Bianchi identity of differential geometry is a balance of spin and
curvature

D ∧ T a := Ra
b ∧ qb (C.1)

and becomes the homogeneous field equation of the Evans unified field theory:

D ∧ F a := Ra
b ∧Ab (C.2)

using the Evans Ansatz:
Aa = A(0)qa (C.3)

So it is important to thoroughly understand the structure and meaning of the
first Bianchi identity as in this Appendix. In order to proceed we need the
following general definitions [2] of the exterior derivative and wedge product
for any differential form:

(d ∧A)µ1···µp+1
= (p+ 1) ∂[µ1Aµ2···µp+1] (C.4)

(A ∧B)µ1···µp+q
=

(p+ q)!
p!q!

(p+ 1)A[µ1···µp
Bµp+1···µp+q ]. (C.5)

Eq (C.4) defines the exterior derivative of a p-form and Eq. (C.5) defines the
wedge product of a p-form and a q-form. We also use the fact that the spin
connection is a one-form [2]. The exterior covariant derivative of a one-form
Xa

µ , for example, then follows as:

(D ∧X)a
µν = (d ∧X)a

µν + (ω ∧X)a
µν (C.6)

where:
(d ∧X)a

µν = ∂µX
a
ν − ∂νX

a
µ (C.7)

(ω ∧X)a
µν = ωa

µbX
b
ν − ωa

νbX
b
µ . (C.8)

Eqs. (C.7) and (C.8) follow using:
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p = 1, q = 1, µ1 = µ, µ2 = ν (C.9)

and
(d ∧A)µ1µ2

= (d ∧A)µν = 2∂[µAν] = ∂µAν − ∂νAµ (C.10)

(A ∧B)µ1···µp+q
= (A ∧B)µν =

2!
1!1!

A[µBν] = AµBν −AνBµ (C.11)

Now extend this method to the exterior covariant derivative of a two-form,
using:

(d ∧A)µ1µ2µ3
= 3∂[µ1Aµ2µ3]

= ∂µAνρ + ∂νAρµ + ∂ρAµν

(C.12)

and

(A ∧B)µ1µ2µ3
=

3!
2!1!

A[µ1Bµ2µ3] = 3A[µBνρ]

= AµBνρ +AνBρµ +AρBµν

(C.13)

Therefore the exterior covariant derivative of the torsion or spin form used in
the first Bianchi identity is:

(D ∧ T )a
µνρ = (d ∧ T )a

µνρ + (ω ∧ T )a
µνρ (C.14)

where:
(d ∧ T )a

µνρ = ∂µT
a
νρ + ∂νT

a
ρµ + ∂ρT

a
µν (C.15)

(ω ∧ T )a
µνρ = ωa

µbT
b
νρ + ωa

νbT
b
ρµ + ωa

ρbT
b
µν (C.16)

and where:
T a

µν =
(
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µν − Γλ
νµ

)
qa

λ (C.17)

Similarly:

Ra
b ∧ qb = Ra

bµνq
b
ρ +Ra

bνρq
b
µ +Ra

bρµq
b
ν
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µνρ +Ra

νρµ +Ra
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=
(
Rσ

µνρ +Rσ
νρµ +Rσ
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)
qa

σ .

(C.18)

So the first Bianchi identity becomes:

∂µT
a
νρ + ωa

µbT
b
νρ + · · · = Rσ

µνρq
a
σ + · · · . (C.19)

Using Eq. (C.17), Eq. (C.19) becomes:

∂µ

((
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νρ − Γλ
ρν

)
qa

λ

)
+ωλ
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(
Γλ

νρ − Γλ
ρν

)
qb

λ + · · ·

= Rλ
µνρq

a
λ + · · ·

(C.20)
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Using the Leibnitz Theorem Eq. (C.20) becomes:(
∂µΓ

λ
νρ − ∂µΓ

λ
ρν

)
qa

λ +
(
∂µq

a
λ + ωa

µbq
b
λ

)(
Γλ

νρ − Γλ
ρν

)
+ · · · = Rλ

µνρq
a
λ + · · ·

(C.21)

Now use the tetrad postulate:

∂µq
a
ρ + ωa

µbq
b
σ = Γλ

µσ q
a
λ (C.22)

in Eq. (C.21) to obtain:

∂µΓ
λ
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λ
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µσ Γ
σ
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σ
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+ ∂νΓ
λ
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λ
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ρσ Γ
σ
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+ ∂ρΓ
λ
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λ
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ρσ Γ
σ
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µσ Γ
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:= Rλ
ρµν +Rλ

µνρ +Rλ
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(C.23)

The Riemann tensor for any connection (Appendix two) is:

Rλ
ρµν = ∂µΓ

λ
νρ − ∂νΓ

λ
µρ + Γλ

µσ Γ
σ
νρ − Γλ

νσ Γ
σ
µρ , (C.24)

and so Eq. (C.23) is an identity made up of the cyclic sum of three Riemann
tensors on either side. The familiar Bianchi identity of the famous Einstein
gravitational theory is the SPECIAL CASE when the cyclic sum vanishes:

Rλ
ρµν +Rλ

µνρ +Rλ
νρµ = 0. (C.25)

Eq. (17.25) is true if and only if the gamma connection is the symmetric
Christoffel symbol:

Γλ
µν = Γλ

νµ . (C.26)

It is not at all clear using tensor notation (Eq. (17.23)) that the first Bianchi
identity is a balance of spin and curvature. In order to see this we need the
differential form notation of Eq. (C.1) and this is of key importance for the
development of the Evans unified field theory.


